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Abstract

The shear induced inertial migration of a rigid sphere has been studies computationally by simulating
the ¯ow around a rigid sphere with a Fourier ®nite volume technique. The values of the lift force
obtained by ¯ow simulation have been compared with those predicted by asymptotic analyses for
rotating and non-rotating spheres. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A rigid sphere that translates in a linear shear ¯ow ®eld will experience a lift force. Using

reversibility arguments, it can be shown that the creeping ¯ow equations do not predict any lift

force. The lift force arises from inertial e�ects. Sa�man (1965, 1968) derived an asymptotic

expression for the lift force by singular perturbation techniques. Sa�man assumed that

ZReGwRes (where ReG is the sphere Reynolds number based on the velocity gradient and Res
is the sphere Reynolds number based on the slip velocity). In other words, the initial terms due

to the shear are large compared to the inertial terms due to the slip velocity of the sphere.

Asmolov (1989) and, independently, McLaughlin (1991) generalized Sa�man's analysis to

allow for the possibility that ZReG0Res Their expression for the lift force reduces to

Sa�man's expression when ZReG/Res41. When ZReG0Res the lift force is smaller than

that predicted by Sa�man's analysis and when ZReG/Res 4 0 the lift force is very small and

changes sign. Sa�man's analysis and its generalization are based on singular perturbation
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techniques. In these analyses, the failure of regular perturbation expansions is due to the
existence of an outer region in the ¯ow ®eld. In Sa�man's analysis, the outer ¯ow ®eld is at a
distance that is O(Zn/G). The lift force arises due to the transverse component of the
disturbance ¯ow in the outer region. In Asmolov and McLaughlin's analyses, the outer region
is at a distance that is min[O(Zn/G), O(n/Vs)]. In all cases, it was assumed that all the Reynolds
numbers are small compared to unity.

Another related problem is the lift on a sphere translating and spinning in a quiescent ¯uid.
Rubinow and Keller (1961) did an asymptotic analysis of this problem and derived an
expression for the lift force. Sa�man (1965) also obtained an expression for the second order
correction to the lift. This correction has two terms; the ®rst one is identical to the Rubinow±
Keller expression and the second one is formally of the same order but of opposite sign.

Auton (1987) analyzed the lift on a sphere translating in weak shear ¯ow of an inviscid ¯uid
and obtained an expression for the lift force. This expression is valid when the change in
incident velocity of the undisturbed ¯ow ®eld across the sphere is much smaller than the slip
velocity of the sphere.

In this paper we will describe a numerical study of the inertial lift on a sphere in a linear
shear ¯ow for Reynolds numbers that are O(1). This numerical study has been conducted for
both stationary spheres and freely rotating spheres. The motivation for the study was the
observation that the lift force can be important in determining the trajectory of particles and
drops in a turbulent ¯ow near a solid wall (McLaughlin, 1989). In such situations the Reynolds
numbers are typically O(1) and it is required to ascertain whether the asymptotic expression
can be used without any serious errors. Dandy and Dwyer (1990) conducted a numerical study
of the lift and drag on a stationary sphere in a linear shear ¯ow ®eld. Most of the data
reported by these authors were for high Reynolds numbers. Their data for Reynolds numbers
that are O(1) indicated good agreement with Sa�man's (1965) analysis. Mei (1992) obtained an
expression for the lift force that is valid for all Reynolds numbers by ®tting an equation to
Dandy and Dwyer's (1990) data for high Reynolds numbers and Sa�man's expression for low
Reynolds numbers.

Several authors have reported experimental data on inertial lift (SegreÂ and Silberberg, 1961;
Goldsmith and Mason, 1967; Cox and Mason, 1971) Most of the data is for ¯ow of
suspensions in tubes and channels and is related to tubular pinch formation. Cherukat, et al.
(1994) conducted an experimental study of lift in a linear shear ¯ow ®eld. They measured the
inertial migration velocity of spheres sedimenting in a linear shear ¯ow ®eld. A linear shear
®eld was produced using a homogeneous shear ¯ow apparatus in which two rubber timing
belts moved in opposite directions. They found that the experimentally measured migration
velocities agree with those obtained using the asymptotic expression derived by McLaughlin
(1991). In the above experiments, wall e�ects were not important. The e�ect of a rigid wall has
been considered by a number of workers in the ®eld. Asymptotic analyses have been done for
situations for which the outer region ¯ow does not contribute to the lift force to leading order
(Cox and Brenner, 1968; Cox and Hsu, 1977; Ho and Leal, 1976; Leighton and Acrivos, 1985;
Cherukat and McLaughlin, 1993) and also for cases in which the ¯ow in the outer region
a�ects the lift force to leading order (Drew, 1988; Schonberg and Hinch, 1989; McLaughlin,
1993).
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The main contribution of this paper is the set of results for the lift force on a sphere when
the particle Reynolds number is O(1). Most existing results for the lift force are based on
asymptotic expansions in the Reynolds numbers. Previous numerical work concentrated mainly
on Reynolds numbers that are large compared to unity. The few existing experimental
measurements in linear shear ¯ows are of the migration velocity. The relationship between the
migration velocity and the lift force in a shear ¯ow is not clear a-priori when the Reynolds
numbers are not small compared to unity. It will be seen that previously published asymptotic
results provide reasonable estimates for the lift force provided that the shear rate is su�ciently
strong.

2. Numerical study of the lift force

Consider a rigid sphere of radius a in a linear shear ¯ow ®eld as shown in Fig. 1. The
¯uid is assumed to be Newtonian with a kinematic viscosity n, dynamic viscosity m and
density r. Consider a Cartesian coordinate system (x, y, z) and a spherical polar coordinate
system (r, y, f) as shown in Fig. 1. The unit vectors in the x, y and z directions are ex, ey
and ez. In the absence of the sphere, the undisturbed ¯ow ®eld is given by Gxez. The sphere
moves with a velocity ÿVsez relative to the undisturbed ¯ow ®eld. In a reference frame that
moves with the sphere, the velocity of the undisturbed ¯ow is (Gx+ Vs)ez. Consider a
computational domain G that consists of the space between the rigid sphere and an
imaginary concentric spherical surface at a su�ciently large distance from the sphere. The
Navier±Stokes equations and the continuity equation can be integrated over an arbitrary
volume O and expressed as

Re

� � �
O

@u*

@t
dV� Re

� � �
O
�u* � ru*�dV � ÿ

� �
@O

P* � ndS�
� �

@O
n � tdS; �1�

� �
@O

n � u*dS � 0; �2�

Fig. 1. The coordinate system for simulation of a uniform shear ¯ow around a sphere.
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along with the boundary conditions

u* � u*b on @G; �3�
where @O and @G denote the boundaries of O and G respectively, u* is the dimensionless
velocity obtained by dividing the velocity by the slip velocity of the sphere, t is the
dimensionless viscous stress, P* is the dimensionless pressure, Re is the Reynolds number
based on the slip velocity and the radius of the sphere and n is the unit vector normal to
@O. If the force on the sphere is F, then the dimensionless force F* is de®ned by

F* � F

maVs
: �4�

In general, the force on the sphere will have non-zero components in the x direction (lift)
and the z direction (drag):

F* � F*
liftex � F*

dragez: �5�

A ®nite set of points called nodes are generated in the computational domain and the
computational domain is then divided into discrete non-overlapping cells (see Fig. 2). One
applies (1) and (2) to these cells to derive the ®nite volume equations. A detailed discussion of
the generation of nodes and cells and the derivation of various forms of ®nite volume
equations may be found in Anderson et al. (1984) and Vinokur (1989). In this study, a grid of

Fig. 2. Six and ®ve faced cells used for discretizing the domain.

P. Cherukat et al. / International Journal of Multiphase Flow 25 (1999) 15±3318



nodes that conform to a spherical coordinate system was generated. Each node lies entirely

within a cell. The cells can have six faces or ®ve faces (see Fig. 2), and each cell has one node

in its interior. The ®ve faced cells occur near the poles y=0 and y= p. Each node is identi®ed
by an ordered integer triplet. The cell surrounding the node (l, m, n) is called the cell (l, m, n).

The y and f coordinates of the node (l, m, n) are given by

ym � mp
Ny ÿ 1

m � 0; . . . ;Ny ÿ 1; �6�

fl �
2pl
Nf

l � 0; . . . ;Nf ÿ 1; �7�

where N y is the number of nodes in the y direction and N f is the number of nodes in the f
direction. The nodes in the radial direction are chosen to lie on the surface of spheres
concentric with the body. For ¯ows past rigid surfaces, the variations in the ¯ow ®eld are

largest near the surface of the body. Hence, a non-uniform spacing of the nodes in the radial

direction was chosen. The value of r corresponding to the nth node in the radial direction is
the Chebyshev collocation point given by

rn � 1� 1ÿ cos
np

2�Nr ÿ 1�
��
�Ro ÿ 1�n � 0; . . .Nr ÿ 1;

��
�8�

where Nr is the number of nodes in the radial direction and Ro is the radius of the outer

boundary. The nodes generated using (8) are densely packed near the surface of the sphere.

This distribution of the nodes in the r direction was chosen based on the results obtained for

Stokes ¯ows. It was found that the computed values of the drag force were closer to that
obtained using the analytical expression when the grid stretching (8) was used as compared

with an algebraic grid stretching. The boundary, @Olmn of the cell (l, m, n) is the union of the

cell faces.

The surface and volume integrals in (1) and (2) must be expressed in terms of the values of
the ®eld variables at the nodes. The resulting system of algebraic equations is solved

numerically. Several methods may be used for expressing the surface integrals in (1) and (2) in

terms of the values of the variables at the nodes. The most commonly used method is to

approximate the variables at cell faces by interpolating linearly between adjacent nodes. Dandy
and Dwyer (1990) used this method in their study of inertial lift on a rigid sphere. The

advantages of this method are that the resulting algebraic system is sparse and the generation

of the coe�cients of the algebraic system of equations is computationally inexpensive.

However, a large number of nodes is required to obtain accurate results for the spatial
variation of the ®eld variables. Since the geometry of the problem is spherical, the velocity and

pressure ®elds are periodic in the azimuthal coordinate, f, when r and y are ®xed. Hence, they

may be expressed as Fourier series in F:

u*�f; y; r� �
XNf=2ÿ1

q�ÿNf=2

~uq�y; r�eiqf; �9�

P. Cherukat et al. / International Journal of Multiphase Flow 25 (1999) 15±33 19



P*�f; y; r� �
XNf=2ÿ1

q�ÿNf=2

~Pq�y; r�eiqf: �10�

The Fourier coe�cients in (9) and (10) are given by

~um�y; r� � 1

Nf

XNfÿ1

j�0
u*�fj; y; r�eÿimfj;m � ÿNf=2; . . . ;Nf=2ÿ 1; �11�

and

~Pm�y; r� � 1

Nf

XNfÿ1

j�0
P*�fj; y; r�eÿimfj;m � ÿNf=2; . . . ;Nf=2ÿ 1; �12�

where

fj �
2pj
Nf

; j � 0; . . . ;Nf ÿ 1: �13�

To obtain the values of the velocity and the pressure on the r and the y faces, it is assumed

that these quantities vary linearly between the nodes straddling these faces. Using (9)±(12), the

surface integrals and volume integrals in (1) and (2) may be evaluated.

Eqs. (1) and (2) are applied to each cell in the computational domain for the x, y and z

components of the velocity. Thus, the discrete approximation of the ®nite volume equations

expressed in terms of the Cartesian components of the velocity ®eld using a grid that conforms

to a spherical polar coordinate system is

M
d�u

dt
�N��u��u � ÿD �P� A�u; �14�

C�u � 0; �15�
where �u and �P are the vectors containing velocities and pressures at the nodes. A�u gives the

surface integral of the viscous stress, DP gives the surface integral of pressure, and C�u gives the

mass ¯ux over the surface of each cell in the computational domain. N�u gives the volume

integral of the convective acceleration term and M(d�u/dt) gives the volume integral of the

temporal derivative term over the cell. Eqs. (14) and (15) form a system of 4NfNyNr non-linear

equations. The linear terms M(d�u/dt), A�u and D �P and C�u were evaluated by expressing the

velocity and pressure ®elds as Fourier expansions in f (9) and (10), and then expressing the

Fourier coe�cients of the velocity and pressure ®elds in terms of the variables at the nodes

using (11) and (12). The integration over the cell faces was done analytically, using linear

interpolation in the y and r directions. Thus, the discrete approximation of all the linear terms

in the ®nite volume equations for all the cells can be expressed as a product of a matrix and a

vector of the velocities and pressures at the nodes. The matrices M, A, C and D depend only

on the grid. A detailed derivation of these matrices can be found in Cherukat (1993).
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The time dependent Eq. (14) and (15) were advanced in time by a ®rst order implicit Euler
time stepping scheme. We did not use a higher order time stepping scheme since we were not
interested in the transients. To avoid solving a system of non-liner equations, the non-linear
term was expressed as N��uk��uk � 1, where the superscript denotes the time step. The term
N��uk��uk � 1 is the discrete approximation of the volume integral fffO(u*�Hu*) in (1), and was
evaluated in the following manner: the velocity ®elds at the kth and (k+1)st time steps were
expressed in terms of these velocity ®elds at the nodes in the f direction using (9) and (11).
The integrations in the r, y and f directions for each cell were done analytically. This results in
an expression of the form N��uk��uk � 1. Since the time stepping was done on the variables in the
physical space, there was no need to de-alias the computations.
To obtain the ®eld at time step k+1 the following system of algebraic equations was solved:

�ÿA�N��uk� � 1
DtM� D

C H

�
�uk�1
�Pk�1

�
�

1
DtMu

k

0

�
:

242424 �16�

H is a (NrNyNf)� (nrNyNf) matrix. The calculations were started from an initial state and
the time stepping was done until a steady state solution was reached. We were interested in
the transient behavior of the solutions. The time step was chosen such that the problem
did not diverge. Also, since the simulations that we did were for low Reynolds numbers,
the high viscosity might have damped most of the instabilities associated with the time
stepping.
The pressure does not appear in the continuity equation for incompressible ¯ows. Also, there

are no boundary conditions on the pressure. Hence, the elements of H are zero. However, the
pressure can be determined only up to an arbitrary constant in incompressible ¯ows. To
remove this hydrostatic indeterminacy, Dirichlet boundary conditions are imposed on the
pressure at certain nodes in the domain. The disturbance pressure on the nodes on the outer
boundary of the computational domain was set to zero. The continuity equations for the cells
next to the outer boundary were removed from the system of equations. This gives a square
system of equations with non-zero elements in H along the diagonal. The matrices A, D, C,
and M are time independent and are generated in a preprocessor step. The matrix N, however,
has to be generated at each time step. If N and M are zero, then (16) is the discrete
approximation to the steady state creeping ¯ow equations. This linear system may be solved to
obtain the steady state creeping ¯ow solution. For obtaining the steady state solution of the
full Navier±Stokes equations, the creeping ¯ow solution was used as the initial condition. The
velocity boundary conditions were substituted for the momentum balance equation at those
nodes where velocity boundary conditions were speci®ed.
The linear system (16) is very large and sparse. For the simulations described in this paper, 8

nodes were used in the f direction, 40 nodes were used in the y direction and 65 nodes were
used in the r direction and the linear system consists of 83,200 equations. Iterative methods are
frequently used to solve linear algebraic systems of equations. Kyrlov subspace methods are a
terminating class of algorithms; i.e. for non-singular coe�cient matrices, it may be shown that
these methods converge to the solution in a ®nite number of steps (see Golub and Van Loan,
1989). In the GMRES method (Saad and Schultz, 1986), the solution is approximated by a
linear combination of the orthonormal basis vectors of an expanding Krylov subspace. The
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computations involved are, essentially, the evaluation of inner products. These computations
are very fast on the IBM RISC 6000 processors on which we performed all our simulations.
The coe�cient matrix need not be generated fully and stored for performing these
computations. The main drawback of the GMRES method is that the number of iterations
required for ®nding a solution depends on the condition number of the coe�cient matrix. The
memory requirements and the number of ¯oating point operations increases with the number
of iterations, since each iteration generates a new vector in the orthonormal basis set for the
Krylov subspace. Since the system of Eq. (16) is generally ill-conditioned, the restarted version,
GMRES(m), was used. In this method, after m iterations the GMRES method is restarted with
the solution obtained after m iterations as the starting value. The system (16) is the discrete
approximation to a di�erential algebraic system (DAE). The continuity equation is a purely
algebraic constraint to the momentum balance equation. When di�erential algebraic systems
are approximated by backward di�erence formulas like the implicit Euler method, the
coe�cient matrix in (16) becomes ill conditioned as the step size decreases (see Petzold and
LoÈ tstedt, 1986). The values of the velocity and pressure ®elds obtained in the previous time
step were used as the initial guess for starting the GMRES algorithm.
The boundary conditions depend on the nature of the boundaries. No-slip boundary

conditions are applied on the surface of the sphere. Since the ¯ow is an unbounded shear ¯ow,
the disturbance ¯ow on the outer boundary will be zero if the outer boundary is su�ciently far
from the surface of the sphere. In most of the simulations described in this paper, the outer
boundary was located at 75 sphere radii from the center of the sphere and zero disturbance
¯ow was assumed on the outer boundary. The drag force obtained for the Stokes problem is
shown as a function of the location of the outer boundary in Fig. 3. It was found that, for
Stokes ¯ow problems with the domain truncated at 75 radii, the computed drag force is within
3% of the exact analytical solution. A very large computational domain will be required to
obtain a numerical solution which is exactly equal to the analytical solution. In (16), the
momentum equations on the boundary nodes are replaced by the boundary conditions and the
resulting system of linear algebraic equations is solved to compute the velocity and pressure at
each time step.
For a freely rotating sphere, the instantaneous dimensionless torque, T*, can be related to

the angular acceleration by the expression

T� �MI
do
dt
; �17�

where MI is the moment of inertia of the sphere. The torque balance Eq. (17) was used to
update the angular velocity. At each time step, the velocity and pressure ®elds were computed
keeping the value of o ®xed. The torque on the sphere was computed based on the computed
velocity and pressure ®elds and the angular velocity was updated by a ®rst-order explicit
scheme:

o�k�1 � o�k � T�

MI
Dt; �18�

where o* is the angular velocity at the kth time step. The transient response of a freely
rotating sphere depends on the value of MI. However, the steady state solution is independent
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of the value of MI. In these computations, the steady state solutions were studied and the
value of MI was chosen to make the explicit time stepping scheme stable. At steady state, the
torque acting on the sphere is zero.

3. Analysis of the lift obtained by numerical simulation of the ¯ow ®eld

For the ¯ow described in Section 2, the Reynolds number based on the velocity gradient
may be de®ned as

ReG � 4Ga2

n
; �19�

and the Reynolds number based on the slip velocity may be de®ned as

Res � 2aVs

n
�20�

Flow simulations were done for ReG=0.04, 0.06, 0.08 and 0.10 for values of Res in the
range 0.02±2.0. The simulations were done for stationary and rotating spheres. As mentioned
in Section 2, the computations were done with the outer boundary located at 75 radii from the
center of the sphere. This domain truncation has an e�ect on the computed values of the lift

Fig. 3. The variation of the computed value of the lift force with the size of the computational domain for Stokes
¯ow.
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and drag forces. Masliyah and Epstein (1970) have shown by perturbation analysis that
locating the outer boundary at 100 radii for axisymmetric creeping ¯ow past a sphere over-
predicts the drag coe�cient by about 2%. The e�ect of truncation of the outer boundary has a
larger in¯uence on the lift force than on the drag force since the lift is due to the inertial e�ects
at large distances from the sphere. This was also observed by Dandy and Dwyer (1990) in their
computational study of inertial lift on a sphere. The lift force is several times smaller than the
drag force, and the e�ect of boundary truncation and numerical errors are likely to cause a
larger relative error in the lift than on the drag.
When ReG, ResW1, to leading order, the equation of motion in the other region may be

expressed as

�Vs � Gx� @vd
@z
� Gvd � ex � ÿ 1

r
rp� nr2vd ÿ 6panVsezd�r�; �21�

where vd is the disturbance ¯ow and d(r) is the three dimensional Dirac delta function. The
assumption that Sa�man made about the relative magnitudes of the Reynolds numbers may be
stated in terms of length scales as���� nVs

����� ����
n
G

r
; �22�

The above condition implies that the inertial e�ects due to shear are large compared to the
inertial e�ects due to the slip velocity, and to leading order, the equation of motion in the
outer region reduces to

Gx
@vd
@z
� Gvd � ex � ÿ 1

r
rp� nr2vd ÿ 6panVsezd�r�: �23�

Thus, Sa�man's analysis applies to a sphere moving slowing in a strong shear ®eld. Sa�man's
expression for the dimensionless lift force, F*lift, is

F�lift � 3:23Re1=2G : �24�
McLaughlin (1991) generalized Sa�man's analysis by removing the restriction (22) and derived
an expression for the inertial lift force by solving (21). The parameter E was de®ned as

E �
���������
ReG
p
Res

: �25�

His result for the dimensionless lift force is

F�lift � 3:23Re1=2G

J�E�
2:255

�
:

�
�26�

The function J is a three dimensional integral that depends only on the magnitude of E. The
function J has a value 2.255 as E41 (the Sa�man limit), and as the value of E decreases, J
decreases rapidly. Sa�man's analysis also gives the second order correction to the lift force.
This second order correction is O(ReG) and the outer ¯ow ®eld does not contribute any terms
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of this order to the second order correction. The expression for the lift force when the second
order correction is also considered is

F�lift � 3:23
���������
ReG

p J�E�
2:255

ÿ 11p
32

ReG; �27�

for a non-rotating sphere. The dimensionless lift force, F�lift, obtained by ¯ow simulation has
been plotted as a function of Res for several values of ReG in Fig. 4. Each of these sets of data
was obtained by keeping the value of ReG ®xed and varying in the slip velocity. It can be seen
that F�lift does not change with Res when Res is very small. The range of values of Res for
which the lift force F�lift is approximately a constant, corresponds to large values of E, and this
behavior of F�lift agrees with that predicted by (27). The value of the lift force for E>5 has
been plotted as a function of Re 1/2G in Fig. 5. The lift force predicted by Sa�man's leading
order expression (24) and that predicted by the second order formula (27) has also been
plotted in Fig. 5. For E>5, the computed values of the lift force agree with those predicted by
(27) to within 6%. This discrepancy is mainly due to the truncation of the domain. As
mentioned before, the simulations were done using an outer boundary that was 75 radii from
the center of the sphere. A few simulations were done with a domain that was 105 radii. The
values of the lift force obtained from these large domain simulations have been compared with

Fig. 4. Dimensionless lift force F �lift on a non-rotating sphere as a function of Res for ReG=0.04, 0.06, 0.08 and

0.10. The lines without the symbols represent the lift force obtained using (27).
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those obtained with the outer boundary located at 75 radii from the center of the sphere in
Fig. 6. In these runs, ReG=0.04. It can be seen that the values of the lift force obtained by the
large domain simulations are larger than those obtained by the corresponding simulations
using the smaller domain. Thus, the truncation of the domain has an e�ect on the computed
values of the lift and the dependence of the computed value of the lift force on the size of the
computational domain for ReG=0.04 and Res=0.02 is shown in Fig. 7. For the large domain
simulations (with the outer boundary at 105 radii), the number of equations in the linear
system that had to be solved at each time step was 102,400. The computational requirements
for these simulations (the number of ¯oating point operations and the memory requirements)
are very large, mainly due to the larger number of iterations the GMRES algorithm requires
for convergence. Hence, we could not conduct simulations with larger domains.
For each value of ReG, as Res increases, F�lift decreases as predicted by (27). According to

(27), the ®rst order term in this equation decreases as Res increases since E decreases as Res
increases for a ®xed value of ReG. The second order term is a negative constant. Hence, for
values of Res that are large (ReswZReG to be precise), the asymptotic theory predicts that the
lift force should be negative and the dominant contribution should be due to the second order

Fig. 5. Variation of the dimensionless lift force F �lift with ZReG for values of E>5.0.
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term. However, our computations do not indicate any change in direction of the lift force for
values of Res that are large compared to ZReG. The smallest value of E that was considered in
this study was 0.10, and the lift force even for this small value of E was found to be positive.
Though the truncation of the domain has an e�ect on the computed values of the lift force,
when Res is large than ZReG, the lift is caused by inertial e�ects that become important at
distances that are O(n/Vs). Hence, for values of Res that are an order of unity or larger, the
e�ect of domain truncation is likely to be small as compared to those cases in which Res is
very small. The leading order term in (27) is obtained by solving (21) for the ¯ow in the outer
region. The terms that are linear in the disturbance velocity have been retained in (21). This
assumption is valid provided that the terms that are quadratic in the disturbance velocity are
smaller than the terms that have been retained in (21). This will be true only if Re s satis®es the
inequality ResW E 2. This inequality imposes a very stringent condition on the slip Reynolds
number when E is small. In our simulations, when E is small, Res does not satisfy the required
inequality. This may explain the discrepancy in the values of the lift force obtained by ¯ow
simulation and those obtained using (27) when ReswE.

Fig. 6. The lift force obtained with simulations in which the outer boundary was located at 105 radii from the
sphere and those in which the outer boundary was located at 75 radii from the sphere for ReG=0.04.
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The lift force is obtained by integrating the pressure stress and the viscous stress over the
surface of the sphere. The contribution of the pressure and the viscous stress to the lift force
has been plotted in Fig. 8. Our computations indicate that, when Res is small, the viscous part
of the lift force is very nearly equal to twice the pressure part of the lift force. This is in
agreement with the leading order asymptotic analyses which show that, to leading order, the
lift force arises due to the x component of the disturbance ¯ow in the outer region. This ¯ow
appears to the sphere as a uniform ¯ow in the x direction and the lift force is given by the
drag produced by this disturbance ¯ow. Thus, the lift force, to lowest order, is given by the
Stokes drag due to the x-component of the disturbance ¯ow at the location of the particle,
which is a mathematical point in terms of a coordinate scaled by an appropriate length scale.
As Res increases, initially, the viscous and pressure parts of the lift force decrease with the
viscous part decreasing twice as fast as the pressure part. Subsequently, the viscous part
continues to decrease and the pressure part appears to attain a constant value. The value of
Res at which this happens depends on the value of ReG. For values of Res that are larger than

Fig. 7. The computed value of the lift force as a function of the size of the computational domain for ReG=0.04,
Res=0.02.
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1.0, the viscous part is very small and shows very small negative values. The pressure part of
the lift force is a constant and the dominant contribution to the lift force is due to the
pressure.
When the sphere is free to rotate, the torque balance equations were solved in each time

step. At steady state, the torque on a freely rotating sphere is zero. It was observed that the
angular velocity of the sphere is equal to half the local vorticity when the slip Reynolds
number is close to zero. As the slip Reynolds number increases, the angular velocity decreases.
The ratio of the angular velocity of the sphere to the angular velocity obtained by solving the
Stokes equations is shown in Fig. 9. In this ®gure, ReG was in the range 0.04±0.10. When Res
is equal to 1, the angular velocity of the sphere is about 94% of the value obtained by solving
the Stokes equations.
The lift force on rotating and non-rotating spheres have been compared in Fig. 10. The

e�ect of rotation is to produce an additional lift in the direction of the computed lift on a
stationary sphere. When Res is small (i.e., large values of E), the increase in the lift force is very
small compared to the total lift force. According to Sa�man's analysis, the lift on a rotating

Fig. 8. The contributions from the pressure and viscous stresses to the lift force for a non-rotating sphere. The solid
lines indicate the viscous contribution and the broken lines indicate the pressure contribution.
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sphere is

F�lift � 3:23
���������
ReG

p J�E�
2:255

ÿ 11p
32

ReG � p
4
ReO; �28�

where ReO is the Reynolds number based on the diameter of the sphere and angular velocity.
The last term on the right hand side of (28) is equal to the expression that was obtained by
Rubinow and Keller (1961) for the lift on a sphere translating and rotating in a quiescent ¯uid.
For values of Res that are large (i.e. when E is small), the lift on a non-rotating sphere is very
small and the increase in the lift force due to the rotation of the sphere is comparable to the
total lift force. The di�erence between the lift force on a rotating sphere and the lift force on a
non-rotating sphere has been plotted as a function of Res for several values of ReG in Fig. 11.
This has been compared with the value given by Sa�man's analysis. The increase in the lift
force due to the rotation agrees with that given by Sa�man's analysis to within 8% when Res

Fig. 9. The ratio of angular velocity of a sphere to the angular velocity under creeping ¯ow conditions as a function

of Res.
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is smaller than 0.5. For Res close to 1.0, the di�erence in the values obtained by ¯ow
simulation and those obtained using the asymptotic expressions (27) and (28) are larger.

4. Conclusion

This computational study indicates that the lift force obtained using (27) and (28) is
reasonably accurate when the slip Reynolds numbers are O(1). The computed values and those
predicted by the asymptotic theories do not match perfectly. However, the qualitative behavior
of the lift force obtained by ¯ow simulations and using the asymptotic expressions are similar.
Both the computed values and the asymptotic theories show that the lift force decreases rapidly
when Re 1/2G becomes smaller then Res. The computed values not indicate any change in the
direction of the lift force when ReswZReG. Part of the discrepancy between the values obtained
by ¯ow simulation and those obtained using the asymptotic expression could be explained by
the e�ect of the domain truncation. This is likely to be large when the slip Reynolds number is

Fig. 10. Dimensionless lift force, F*lift on non-rotating and rotating spheres as a function of Res. The solid lines
represent the lift on rotating spheres and the broken lines indicate the lift on stationary spheres.
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small. At higher Reynolds numbers the discrepancy is probably due to the breakdown of the
asymptotic approximation (21). The e�ect of rotation is to increase the lift force; the rotation
produces a lift that acts in the same direction as the computed lift on a non-rotating sphere.
When ZReGwRes, the rotation produces a higher order e�ect and its contribution can be
neglected without introducing any serious errors in the estimation of the lift force. However,
since the lift on a non-rotating sphere is very small in magnitude when Res>Re 1/2G , the e�ect
of rotation in such cases is comparable to the total lift force. For slip Reynolds numbers that
are not large, the e�ect of rotation can be estimated using Sa�man's second order expression
(28). In this study we have not been able to investigate the lift force for small values of E when
the linearized momentum equations are valid (i.e. when ResW E 2). To achieve this condition,
ReG and Res would have to be very small and a very large domain would be required to obtain
accurate results for the lift force. In their study, Dandy and Dwyer (1990) used a smaller
domain and out¯ow type boundary conditions at the outer boundary. The boundary
conditions are useful in reducing the size of the domain for ¯ows in which the Oseen wake is

Fig. 11. The di�erence F di� in the lift force on rotating spheres and non-rotating spheres. The curves represent the
di�erence obtained using (26) and (27).
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small and the ¯ow outside the wake decays fast. It is not clear whether these boundary
conditions can be applied to a smaller domain when the Reynolds numbers are close to unity.

Acknowledgements

This work was supported by grant DE-FG02-88ER13919 from the U.S. Department of
Energy. Most of the computations were done using IBM RS6000 computers in the A.V.S.
Laboratory at Clarkson University. The large domain computations were done on IBM
RS6000 computers at the Cornell National Supercomputer Facility, a resource of the Cornell
Theory Center, which is in part funded by the National Science Foundation, New York State,
the IBM Corporation and members of the Center's Corporate Research Institute. This work
was done while one of the authors, PC, was at the Chemical Engineering Department,
Clarkson University, Potsdam, NY 13699.

References

Anderson, D.A., Tannehilll, J.C., Pletcher, R.H., 1984. Computational Fluid Mechanics and Heat Transfer. Hemisphere, New York.

Asmolov, E.S. 1989. Lift force exerted on a spherical particle in a laminar boundary layer. Izvestigya Akademi Nauk SSSR,

Mekhanika Zhidosti i Gaza. no. 5. 66±71.

Auton, T.R., 1987. The lift force on a spherical body in a rotational ¯ow. J. Fluid Mech. 183, 199±218.

Cherukat, P., 1993. Ph.D thesis, Clarkson University.

Cherukat, P., McLaughlin, J.B., 1993. Inertial lift on a rigid sphere in a linear shear ¯ow ®eld near a ¯at wall. J. Fluid Mech. 263, 1±18.

Cherukat, P., McLaughlin, J.B., Graham, A.L., 1994. The inertial lift on a rigid sphere translating in a linear shear ¯ow ®eld. Int. J.

Multiphase Flow 20, 339±353.

Cox, R.G., Brenner, H., 1968. The lateral migration of solid particles in Poiseuille ¯ow: I. Theory. Chem. Engng. Sci. 23, 147±173.

Cox, R.G., Hsu, S.K., 1977. The lateral migration of solid particles in a laminar ¯ow near a plane. Int. J. Multiphase Flow 3, 201±222.

Cox, R.G., Mason, S.G., 1971. Suspended particles in ¯uid ¯ow through tubes. Ann. Rev. Fluid Mech. 3, 291±316.

Dandy, D.S., Dwyer, H.A., 1990. A sphere in shear ¯ow at ®nite Reynolds number: e�ect of shear on particle lift, drag and heat trans-

fer. J. Fluid Mech. 216, 381±410.

Drew, D.A., 1988. The lift force on a small sphere in the presence of a wall. Chem. Engng. Sci. 43, 769±773.

Goldsmith, A.J., Mason, S.G., 1967. The microrheology of dispersions. Erich FR, Ed. Rheology Theory and Applications. 85±250.

Academic Press, New York.

Golub, G.H., Van Loan, C.F., 1989. Matrix Computations. The Johns Hopkins University Press, Baltimore.

Ho, B.P., Leal, L.G., 1976. Inertial migration of rigid spheres in two-dimensional unidirectional ¯ows. J. Fluid Mech. 65, 365±400.

Leighton, D.A., Acrivos, A., 1985. The lift on a small sphere touching a plane in the presence of a simple shear ¯ow. Z. Agnew. Math.

Phys. 36, 174±178.

Masliyah, J.H., Epstein, N., 1970. Numerical study of steady ¯ow past spheroids. J. Fluid Mech. 44, 493±512.

McLaughlin, J.B., 1989. Aerosol particle deposition in numerically simulated channel ¯ow. Phys. Fluids A1, 1211±1224.

McLaughlin, J.B., 1991. Inertial migration of a small sphere in linear shear ¯ows. J. Fluid Mech. 224, 261±274.

McLaughlin, J.B., 1993. The lift on a small sphere in wall-bounded linear shear ¯ows. J. Fluid. Mech. 246, 249±265.

Mei, R., 1992. An approximate expression for the shear lift force on a spherical particle at ®nite Reynolds number. Int. J. Multiphase

Flow 18, 145±147.

Petzold, L., LoÈ tsted, P., 1986. Numerical solution of nonlinear di�erential equations with algebraic constraints II: practical impli-

cations. SIAM J. Sci. Stat. Comput. 7, 720±733.

Rubinow, S.I., Keller, J.B., 1961. The transverse force on a spinning sphere moving in a viscous ¯uid. J. Fluid Mech. 11, 447±459.

Saad, Y., Schultz, M.H., 1986. A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.

Comput. 7, 856±869.

Sa�man, P.G., 1965. The lift on a small sphere in a slow shear ¯ow. J. Fluid Mech. 22, 385±400 (and Corrigendum, 31, 1968, 624).

Schonberg, J.A., Hinch, E.J., 1989. The inertial migration of a sphere in Poiseuille Flow. J. Fluid Mech. 203, 517±524.

SegreÂ , G., Silberberg, A., 1961. Radial particle displacements in Poiseuille ¯ow of suspensions. Nature 189, 209±210.

Vasseur, P., Cox, R.G., 1976. The lateral migration of a spherical particle in two-dimensional shear ¯ows. J. Fluid Mech. 78, 385±413.

Vinokur, M., 1989. An analysis of ®nite-di�erence and ®nite-volume formulations of conservation laws. J. Comput. Phys. 81, 1±52.

P. Cherukat et al. / International Journal of Multiphase Flow 25 (1999) 15±33 33


